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ABSTRACT

Close-in air blast from the Danny Boy event resulted almost
entirely from the ground-shock-induced air blast. Little pressure
resulted from venting gases. Consequently, measured pressures were
only one-third to one-fourth of those predicted. Ground—shpck-
induced pressures from the nuclear charge were found to attenuate

less rapidly than those from chemical explosives.
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CHAPTER 1

INTRODUCTION

1.1 OBJECTIVE

The objective of the air blast measurement program was to determine
the overpressure-time-distance relationship at ground level along one
blast line for the purpose of determining the extent of close-in blast
suppression., This experiment extends blast observations from charges
buried in basalt to 430 tons, a yield larger by a factor of 20 than
yields of Project Buckboard. The new data permit some indication of the
extent to which differences in close-in blast can be attributed to dif-

ferences in the type of explosive used (nuclear or chemical explosive).

1.2 BACKGROUND

Close-in air blast along the ground surface has been measured on
underground detonations from high explosives in Nevada Test Site desert
alluvium using high-explosive charges of 256 (References 1, 2, and 3),
2,560 (Reference 1), 40,000 (Referencesl and 4), and 1,000,000 (Reference 5)
pounds., It has also been observed on a surface nuclear detonation (Refer-
ences 6 and 7) and on two relatively shallow nuclear detonationms (Refer-
ences 6, 7, and 8) in the same medium. On Project Buckboard (Reference 9)
blast overpressures were measured along the ground from three Lo, 000-
pound detonations at three different burst depths in basalt. The Buck-
board experiments led to the conclusion that no difference in the suppres-
sion of peak overpressure is attributable to the harder medium; that is,
with high explosives, suppression of peak overpressure is essentially the

same in alluvium and basalt.

A typical overpressure waveform from an underground high-explosive
detonation shows a ground-shock-induced pressure pulse (often referred to

as the "front porch") followed by the main portion of the blast wave
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generated by the venting of the explosion gases (Figure l.la). The wave-

forms from Project Danny Boy (Figure 1.1b) are explained later.

1.3 INSTRUMENTATION
1.3.1 Gage Locations

Gages were located along an approximately SE radius at radial
distances along the ground at 200, 265, 350, 470, 630, 840, 1120, 3100,
and 8500 feet. Typical gage installations are shown in Figure l1.2. Fig-
ure 1.3 shows the completed gage installation with the cleared area
immediately around the gage. This photograph was taken looking toward

surface zero.

1.3.2 Gage Types

Measurements were made using Ballistic Research Laboratories
self-recording pressure gages (Figure 1.4)., 1In these gages, a battery-
operated motor drives a turntable carrying either an aluminized glass disc
or a stainless steel disc. A pressure sensitive diaphragm, connected
directly to a scribe, permits the pressure record to be inscribed on the
disc as the turntable rotates. The gage motor is started by a timing
signal at -1 second. Standard pressure-time gages (PT's) were used at
Stations 1 through 7, and very low pressure gages (VLP's) were used at
Stations 6 through 9). Both types of gages were installed at Statioms 6
and 7.
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Figure 1.2 Typical Gage Installation

Figure 1.3 Cleared Area Around Gage Installation




Figure 1.4 Self-Recording Pressure-Time Gage
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CHAPTER 2

TEST RESULTS

2,1 SUMMARY OF RESULTS

Table 2.1 summarizes the results of the pressure measurements. Be-
cause peak pressures only were obtained at Statioms 5, 6B, 7B, and 8,
records of pressure-time are not reproduced. Pressure records from the
remaining seven gages are shown in Figures 2.1 through 2.4. Time in
the figures is time from the arrival of the signal shown. The pressure
wave illustrated is the first wave in all cases except at the 3100-foot
station (Station 8), where the wave shown, as explained later, is from

another source.

2.2 PEAK OVERPRESSURE

Figure 2.5 shows peak overpressures as a function of ground range.
Also shown is the curve predicted before the shot for a slightly larger
yield and a comparatively deeper burst depth; set ranges of the gages
were based upon this curve. As indicated by the figure, all pressure

records obtained were one-third to one-half of the set range.

2.3 POSITIVE PHASE

The positive-phase impulse of the pressure records is shown in
Figure 2.6. The duration of the positive phase as a function of ground
range is given in Figure 2.7. As is usual in pressure measurements, the
scatter in positive-phase duration data is considerably greater than that

in either peak overpressure or positive-phase impulse.

2.4 ARRIVAL TIMES

Arrival times are plotted in Figure 2.8.
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TABLE 2.1 SUMMARY OF RESULTS

Positive~ Positive=-
Ground Type  Capsule Peak Arrival phase phase
range of range pressure time duration impulse
Station (feet) gage (psi) (psi) (sec) (sec) (psi-msec)
1 200 PT 1/2 .255 - 276 48.3
2 265 PT 1/2 .16 .510 .250 23.08
ot 1.48 .685
3 350 PT 1/2 W11 .815 .365 21.36
.02 1.83 410
L k70 PT 1/2 12 1.075 .505 19.86
.04 1.485 .08
.03 2.38 .70
5 630 PT 1/2 .075 PEAK ONLY
6A 840 PT 1/2 .045 1.070 145 3.52
6B 840 VLP /L .080 PEAK ONLY
TA 1120 PT 1/2 .055 1.385 .345 10.47
B 1120 VLP 1/h .070 PEAK ONLY
8 3100 VLP /4 .027 3.64
. 065 11.25 .125 2.72
9 8500 VLP 1/h .060 PEAK ONLY
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Figure 2.5 Maximum Overpressure versus Ground Range
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Figure 2.6 ©Positive Impulse versus Ground Range
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Figure 2.7 Positive Phase Duration versus Ground Range
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Figure 2.8 Arrival Time versus Ground Range
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CHAPTER 3

DISCUSSION

3.1 WAVE SHAPE

The most unusual thing about the waveforms from the Danny Boy detona-
tion is that upon first examination they showed only a single pressure
pulse, that shown in Figures 2.1 to 2.4, This is in contrast to waveforms
from high-explosive detonations in basalt and desert alluvium (Buckboard
Shot 12 and Scooter) at an only slightly greater burst depth; these have

shown two distinct pulses, the second one dominant.

Initial plotting of the arrival times of these waves (Figure 2.8)
only added to the confusion, since they fell between those of the first
and second waves of Scooter scaled to the Danny Boy yield. In addition,
the arrival time at 3100 feet (Station 8) was far too late to be directly

associated with the waves whose arrivals were noted from the closer stations.

Careful scrutiny revealed barely discernable signals following the main
signals at the four closest stations (Statioms 1, 2, 3, and 4). Plots show
(Figure 2.8) that these waves follow the preceding ones by about the same
interval that the Scooter waves followed the first., This suggested that
the main signals were ground-shock-induced waves, and that the very weak
secondary waves were caused by venting gases. These latter waves were too

much attenuated to be observed at Stations 6, 7, and 8.

Similarly, close examination of the record from Station 8 shows a very
weak earlier wave whose amplitude was only 0.027 psi. Its arrival time was
in agreement with arrivals of the dominant (first) wave at the other statioms.
This fact, together with the observation that the second wave had disappeared
at even closer stations, leads to the conclusion that the weaker wave was the
first or ground-shock-induced wave, that the second wave had disappeared, and
that the third and dominant signal at Station 8 must have had a different
origin. Since amplitudes at Stations 8 and 9 are nearly the same, the wave

must have attenuated very slowly. The arrival of the third wave at Station 8
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at 11.25 seconds and its awmplitude justify its being attributed to a 2400-
pound microbarograph calibration charge detonated 11,800 feet away at zero
time. Obviously, the values from this wave cannot be considered further in

relation to Project Daany Boy.

3.2 PEAK OVERPRESSURE

Peak overpressures of the main (first) wave as a function of ground
range scaled to a l-pound charge are shown in Figure 3.l. The relatively
constant overpressure beyond 12 ft/lbl/3 represents the third wave, attributed
to the microbarograph calibration shot. Also shown in Figure 3.1 is a curve
representing expected pressures from the second or gas-venting pulse based on
high-explosive data at the same scaled burst depth. For this pulse, there
was essentially no difference in peak overpressure from high explosives de-
tonated in alluvium and basalt, and it was upon the combined data that the
estimates of expected overpressures had been based. Since the arrival times
(Figure 2.8) were bracketed by the arrival times of first and second pulses
of Project Scooter scaled to Danny Boy yield, they could not be used without
the later arrivals at the three closest stations to indicate conclusively
whether the single pulse shown on the Danny Boy records represented a ground-

shock-induced air shock or a gas-venting pulse.

An examination of Project Buckboard data shows that the first ("front
porch") wave from Buckboard Shot 11 at a scaled burst depth of 0.75 ft/lbl/3
=97

is given by p = 1.2 r , where r is the scaled ground range. For Buck-

board Shot 12 at a scaled burst depth of 1.25 ft/1b1/3, the relationship was
p = 0.9 r_l'l*. Interpolation between these relationships gives a predicted
"front porch" wave for Danny Boy of about p = 0.95 r_l'l. This relatiounship
is shown in Figure 3.1. The close agreement of the measured data to this
prediction is taken as final evidence that the dominant pulse measured is,
in fact, the ground-shock-induced air shock. A best-fit pressure-distance
relationship for the measured pressures is about p = 0.32 r_'70° Even with
this spread between measured and predicted pressures, it is clear (1) that
peak pressures from the nuclear shot are less than were predicted from high-
explosive data and (2) that the pressure attenuates less rapidly from the
nuclear detonation than it did from high-explosive detonations in the same

medium and at comparable burst depth.

*Pressures in the first wave in alluvium are less; the corresponding

-1.1
relationship for Scooter being p = 0.52 r .
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Peak overpressure values for the gas-venting pulse at the three closest
stations are also shown in Figure 3.l1. These signals are so small a part of
set range that great precision cannot be obtained. They do show that the gas-
venting pulse is only about one~third as large as the ground-shock-induced
pulse., This is in contrast to high-explosive experience where the ground-
shock-induced pulse at nearly the same scaled burst depth is about one-third

of the gas-venting pulse.

All values from the gage at Station 6A are low, but a careful re-

evaluation revealed no reason for modifying the numbers shown.

3.3 POSITIVE-PHASE IMPULSE

Although it is possible to define the peak overpressure associated with
each portion of the blast wave, it is not worthwile to define their positive-
phase impulses., This is because the amplitudes of all but the dominant wave
of Danny Boy are so low (only a few mils on the original record) and such a
small portion of set range that scatter in data is especially large. Also,
comparisons with high-explosive data are difficult, because there the "front
porch'" typically runs into the dominant wave, making it impossible to define
them separately. Therefore, it was to be expected that the values measured
on Project Danny Boy, consisting only of impulse from the ground-shock-induced
wave, would fall below the impulses predicted from high-explosive waves, which
are made up of contributions from both the ground-shoék—induced and gas-

venting waves (Figure 3.2).

3.4 POSITIVE-PHASE DURATION

As in the case of the positive-phase impulse, only the positive-phase
duration of the dominant wave of Danny Boy can be compared with the total
positive-phase duration from high explosives, which includes both first and
second waves. Danny Boy results and a comparison with total positive-phase

duration from high-explosive tests scaled to 1 1b are shown in Figure 3.3.

3.5 EXPLOSIVE IMPLICATIONS

Close-in air blast from above-ground detonations is known with suffi-
cient accuracy that estimates of explosive yield can be made from pressure-

distance observations. Only slightly less accurate estimates can be made for
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high-explosive detonations underground where the gas-venting pulse is domi-
nant. For nuclear charges in basalt at deeper depths below ground, as
evidenced by Danny Boy where the dominant pulse is ground-shock-induced,
such estimates appear to have little meaning. Because the dominant wave
from the nuclear detonation appears to attenuate less rapidly then the first
wave from high-explosive detonations, estimates of Danny Boy yield vary with
the ground distance of the peak pressure observations from 75 tons near the

closest station to 325 tons at 1120 feet.

The very small gas-pressure pulse from the Danny Boy event may be attri-
buted to the almost total lack of moisture in the basalt. More significant,
second pulses may be expected from detonations in media with greater water
content or in media (such as limestone) where chemical reactions can be ex-
pected to produce higher gas pressures. These measurements are useful in
determining the relative importance of gas pressure as a mechanism of crater

formation and, hence, should be continued on nuclear cratering events.
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CHAPTER k4

CONCLUSIONS

The dominant pressure pulse from the Danny Boy event is shown to
have been the ground-shock-induced air blast. Only a very small pressure
pulse resulting from the venting of explosive gases was recorded at the
three closest stations. Since a significant pulse results from the venting
gases of high-explosive detonations at the same scaled burst depths, this is
the most pronounced difference between close-in air blast from nuclear and
high-explosive detonations underground. Peak overpressures from venting
gases were only about one-third those of the ground-shock-induced pulse,
while with high explosives at the same scaled burst depths they were about
three times the ground-shock-induced pressure. This drastic reduction in
venting-gas pressures accounts almost entirely for the fact that the close-
in blast from nuclear charges is suppressed more by charge burial than that

from high-explosive charges.

The peak ground-shock-induced air pressure is shown to attenuate less
rapidly for a nuclear charge in basalt than for high-explosive charges in

the same medium,

The TNT equivalent of the blast from Project Danny Boy can be deduced
only from the peak overpressures of the ground-shock-induced wave. Since
the waves are attenuating at different rates, the apparent blast yield
ranges from 75 tons at the closer stations to about 325 tons near the sta-

tion at 1120 feet.
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